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Comparing Error Estimators for Runge-Kutta Methods 

By L. F. Shampine and H. A. Watts* 

Abstract. A way is proposed to compare local error estimators. This is applied to the 
major estimators for fourth-order Runge-Kutta procedures. An estimator which leads to 
a production code 18% more efficient than a code using the standard one is recommended 
and supported by numerical tests. 

1. Introduction. The design of a production code for the numerical solution of 
ordinary differential equations requires three major choices (at least): the method of 
advancing the solution one step, the method of estimating the local error incurred in 
one step, and the strategy for choosing the next step length. The first choice has been 
intensively studied in the literature of numerical analysis but the latter two have been 
rather neglected in spite of their great practical significance. The aim of this paper is 
to compare alternatives for estimating the local error. We restrict ourselves to estima- 
tors appropriate to fourth-order Runge-Kutta methods for two reasons. Production 
codes based on fourth-order Runge-Kutta processes are quite common and we are 
able to recommend improvements based on this study. Secondly, texts frequently 
mention how easy it is to change the step size when using Runge-Kutta procedures 
but they often fail to point out the associated practical disadvantages. Namely, it is 
rather difficult and expensive to estimate the local error and so decide when to change 
the step size. Furthermore, the standard estimator forces one to use a relatively 
crude step size strategy. It is, therefore, important to consider the reliability and 
efficiency of error estimating schemes. 

In Section 2, we shall propose a way of comparing numerically local error estima- 
tors which seems to be of broad applicability. Section 3 describes the most useful 
error estimators known to the authors, which are then compared in the fourth section. 
Qn the basis of this comparison and other facts presented, we recommend a Runge- 
Kutta process using an estimator different from the standard one. To further support 
this recommendation, we describe in Section 5 the results of numerical tests compar- 
ing a production code using the standard estimator and the same code modified to 
use the estimator we suggest. 

2. Comparing Methods for Estimating Local Errors. To study numerically the 
relative effectiveness of local error estimators, we shall need a broad class of dif- 
ferential equations for which we can evaluate the true solution for arbitrary initial 
conditions. Since the local error of Runge-Kutta (R-K) methods depends on the 
form of the equation as well as the solution, it is necessary to use a variety of non- 
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linear equations. Although the class we suggest can be treated for systems of equa- 
tions, we restrict our attention to a single equation 

y'(x) = f(x, y(x)), y(xo) = Yo. 

We suggest using the class of problems defined by those f which can be represented 
by a convergent double power series near the point of interest (x0, yo). Without loss 
of generality, we shall assume that (x0, yo) = (0, 0), so that the initial-value problem 
becomes 

(1) y'(x) Eai aix'y' =f(x, y), y(O) 0. 
i . i-o 

The differential equation then has a unique solution analytic in some neighborhood 
of the origin and can be represented by a power series there, 

(2) y(x) = i ckx'. 
k-i 

The coefficients can be derived recursively as follows: Define Ck. as the coefficient of 
xk in the jth power of y, 

[y(X)] = E Ck, X.v 
k-i 

Noting that Ck, = 0 for k < j and that ck, l-c, we easily obtain 
k-i 

(3) Ck,i+I E CaCk-n, j forj2 1. 
ni-i 

On substituting these series in (1) and equating coefficients, we get 
k-2 k-1-i 

(4) kCk = ak_1,0 + L E ajjck-i.i) for k 2 I 
i-O i-i 

where we take = 0. 
For our numerical studies we, of course, truncate the series (1), (2) but we still 

need to know the region of convergence. Let us suppose that the a, i satisfy jai i I < I. 
(We shall, in fact, generate the at i randomly and uniformly distributed in the interval 
[- 1, 1].) The method of majorants then guarantees that the series (2) has a radius 
of convergence of at least 1 - exp(-4) 0.3935 [1, pp. 282-283]. 

Let us now describe a way of comparing local error estimators. By definition, the 
actual error incurred in a single step of length h, say from x = 0 to x = I, is 

(5) r(h) =- true local error = -Y-y(), 

where y, denotes the approximate solution given by the numerical procedure. For 
a method of order p, the local error is, by definition, O(hP+i). We further assume that 
for this single step 

(6) r(h) = ch'+' + ah'+2 + O(hp+3), 

where c and a are constants (depending on f but independent of h). A scheme for 
estimating this local error ought to be asymptotically correct; that is, the estimated 
local error, E(h), should satisfy 
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e(h) 
(7) lim-)=:a, 

Ih-.O r(h) 

where , is a finite constant equal to one for those problems with c # 0. We shall only 
consider such procedures; so let us write 

(8) e(h) chv+l + bh" 2 + O(hp 3), 

where b is a constant (depending on f, independent of h). We shall now discuss how 
we may compare estimators for sufficiently small h. For this asymptotic comparison 
we compute 

(9) d(f) rim n p+2- b - a. 
h-O h 

It may seem unlikely that one would consider estimators which are not asymptotically 
correct. Nevertheless, in the next section, we shall mention two such estimators. An 
important point to be kept in mind is that one might base his error control on a 
quantity other than local error. For example, the global error is really the quantity 
of interest though this option seems almost unexplored. However, granted that one 
estimates local error and that his estimator is at least asymptotically correct, it seems 
reasonable to compare estimators by their effectiveness in estimating the next term 
in the asymptotic expression for the local error. 

Computationally, we proceed as follows: For a given problem (1), where the 
a, i are generated randomly in the interval [-1, 1], we compute e and r for a sequence 
of h values for each method being tested. This sequence consists of h values decreasing 
to zero with the initial (largest) h chosen so that the series (2) is convergent for x = 

i:2h. Since we approximate asymptotic results (h -* 0), the series converges very 
rapidly. Now, for each h of this sequence, we compute the ratio in (9), until suc- 
cessive approximations to d(f) differ by less than a prescribed amount. Finally, we 
compute the average and maximum values of our approximations to Id(M over an 
ensemble of randomly chosen problems for each method. 

3. Some Error Estimating Schemes. We shall first describe two estimators 
which we shall not study and explain why. The Merson process [2] is used in a number 
of codes. However, it does not seem to be adequately appreciated that the justification 
of this method is restricted to equations of the form f(x, y) = ax + ,3y + 'Y. The 
method is not asymptotically correct for general nonlinear equations, as the simple 
example y'(x) = x + xy(x), y(O) = 0 shows clearly. A little computation results in 

r(h) - 
- 

hb + O(h8), 
432 

whereas Merson's estimator gives 

(h) 
I 

h4 + O(h6) 

so that Eq. (7) fails to be satisfied. Since the method is without theoretical support 
for general equations, we recommend it be abandoned. It is worth comment that 
although asymptotically the estimate bears no useful relationship to the true error, 
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codes based on it are too conservative in the choice of step size as the order of the 
error is estimated to be too low. Thus, they are simply inefficient. 

Zonneveld [3] gives an error estimation scheme which cannot be compared using 
the method of the previous section, because he does not estimate the local truncation 
error. He estimates the last term of the Taylor expansion that has been taken into 
account. For a fourth-order process, this is the contribution of order h4 which enters 
into the value of yh. His numerical results seem quite satisfactory though his step 
size strategy may compensate for any shortcomings of the error estimator. Hull 
[4] reports some limited comparison with the doubling procedure we shall now 
describe. 

Extrapolation procedures are the most familiar and widely used techniques for 
estimating local errors associated with Runge-Kutta methods. These compute solu- 
tions (locally) twice with different step sizes and combine the results to estimate the 
error in one of the values. The most common choice is to compute Y2h by two steps 
of length h and y * by one step of length 2h. The average of the error accumulated 
in the two steps is then estimated by 

(10) e(h) Y2h Y2h 

for a fourth-order R-K method. This procedure will be referred to as doubling and 
it seems fair to describe it as the standard estimator for R-K methods. The technique 
is not limited to fourth-order processes nor to one-step methods. Theoretical details 
and justification may be found in [5, pp. 80-82]. If the estimated error is acceptable, 
we expend 52 function evaluations per step using any of the standard fourth-order 
R-K processes. If the estimated error is unacceptable, we reduce h to h/2 so that 
some of the data computed may be reused. Then, an unacceptable error results in a 
loss of seven function evaluations before we recycle the computations. Although this 
may not be the most efficient refinement logic with respect to number of function 
evaluations per unit increase in x, such strategy seems to be universally used in 
production codes. 

The next class of methods we shall consider may be referred to as multistage 
error estimates which are based on approximate quadrature and local expansions 
at several neighboring points. Estimates of this type may be found in [6] and again 
do not depend on any particular R-K process. Let us note that the error is being 
averaged over several steps and may be unreliable when the error is changing rapidly. 
A further disadvantage is that one now has the complications associated with the 
construction of a multistep code. We shall be concerned with four such estimates. 
The most accurate formula listed by Ceschino and Kuntzmann is of the form 

(11) e(h) = I 
((lIyn+i + 27Yn - 27y._1 - lly.-2) - h(fn+i + 9f, + 9f.-I + f,-2)- 

One can obtain such a formula via the Hermite interpolating polynomial. Theoretical 
justification of its use is rather complicated and only sketched in [6, pp. 248-249]. 

A detailed derivation shows this formula to be more accurate (as applied to 
methods of order ?4) when the estimated error is taken to be the error in going 
from xn,1 to x,. In the context of our numerical comparison scheme (recall we are 
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interested in the error incurred in going from x = 0 to x = h), Eq. (11) becomes 

(12) e(h) =6 (1 lY2h + 27YA - 1 1Y-h) - (f2h + 9fh + 9fo + f-A). 

using the initial condition Yo 0. 
Here Y2h, y, and y-h are taken to be the numerical solutions obtained from the 

R-K process at the points x = 2h, h, -h, respectively, where Y, results from an 
integration proceeding backward one step from x 0 and Y2h is the two-step solution 
as discussed in the doubling procedure. This way of supplying the needed data for 
the error formula seems best for an unbiased comparison of the various estimators. 
Now, utilizing some fourth-order R-K process in a numerical algorithm with (11) 
being applied for estimating the error over xn,1 to xn, we expend four function 
evaluations per step as long as the error is tolerable (since we can reuse fn+, as fn in 
the next step). If not, and our acceptability criterion calls for a reduction in step, 
we lose eight function evaluations and must fill in new values for Yn-2 and fn,2 which 
are needed in the estimator. These would be obtained most cheaply via interpolation. 
An advantage over doubling in the step size strategy is that no additional penalties 
are incurred in reducing the step to other than h/2. 

Alternatively, if we wish to interpret the multistage error estimate (11) as repre- 
senting the error over xn to x,+1, the equation for the comparison scheme becomes 

(13) e(h) (0(I l- 27Y^ - I ly-2h) - (fh + 9fo + 9f-h + f-2k). 

As before, the values y-, and Y-2k are computed solutions obtained via the R-K 
process by backward integration of one and two steps, respectively. Again, this way 
of supplying -the required values is merely for our comparison purposes, the intent 
being to approximate the solution errors introduced in a normal application of the 
estimator, (11). The advantage of such a numerical algorithm is that one obtains an 
estimate of the error incurred over the single step in which the solution is being 
advanced, thereby resulting in a loss of only four function evaluations when the 
current step is rejected. Again, let us assume that the missing values required for the 
estimator are to be supplied by interpolation. We find that reducing the step to h/2 
requires new values for Yn_- and f,,n whereas reduction to other than h/2 requires 
the additional values Yn-2 and f n-2- 

We initially included two other multistage formulas in our comparisons. These 
were 

(14) e(h) = (33y.+1 + 24y- 57y._1) - 90 (1Of.+1 + 57f. + 24f._l - tf-2) 

and 

(15) e(h) = (y.+1 + 18y. - 9y._1 - 10Y.-2) - 3 (9fn + 18f.-l + 3f.-2), 

formulas V*(a) and V of [6, p. 250], respectively. (Formula (15) was first given by 
Morel [7].) Although Morel's estimator was more accurate than (14), they were 
both found to be considerably less accurate on the average than were (12) and (13). 
Because of this and the fact that they offer no other significant advantage (though use 
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of Eq. (15) in estimating the error over xn to xn,, does result in a loss of only three 
function evaluations if refinement occurs), these estimators were dropped from our 
final tests. 

Our next estimator is not as well known as the previous methods. England [8] 
has recently given some very efficient processes which use quantities calculated 
during a R-K step in an "internal" error estimating formula. The particular scheme 
of most appeal to us is given in Eqs. (8) and (9) of his paper and is completely com- 
parable to the technique of doubling. 

To get some feeling for the internal estimators, we derived a simple family for 
the Euler-Cauchy second-order Runge-Kutta process: 

ko = hf(xo, yo), 

k, = hf(xo + h, yo + ko), 

y = yo + (ko + k). 

We begin on the second step, perform an extra function evaluation, and estimate the 
error in yi: 

k2 = hf(xl, yj), 

k3 = hf(xl + ah, Yi + k2), 

r, = 5oko + 61k, + 52k2 + 53k3. 

The parameters a, f3, So, 61, &2, 63 are to be chosen so that y(xl) - = ri + 0(h4). 
A relatively simple expansion and equating of coefficients leads to the equations 
a =3, ao0 -(61 + 62 + 63) and 

a1 + 62 + (1 + a)63 = 0O 

52 + (2a + 1) 53 = 

51 + 62 + (I + a)263 = 

For given a, there is a unique solution if and only if a 0 0, -1. The excluded cases 
are not surprising since, for them, k3 does not provide a new function evaluation. 
A very desirable choice is a = 1, for then 

k3 hf(xl + h, Yi + k2), 

Y2 = Yi + 2(k2 + k3), 

r= (-ko - 5k1 + 7k2 - k3)/12, 

and if r, is tolerable, we have Y2 immediately available and the error estimate is 
obtained with no extra expense. 

England's scheme uses a particular fourth-order R-K procedure which calculates 
the first step by 

ko = hf(xo, yo), 

ki = hf(xo + h, yo + 1ko), 
k2 hf(xo + 1h, yo + (ko + kI)), 

k3 hf(xo + h, yo - k1 + 2k2), 

=l yo + i(ko + 4k2 + k3), 
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and starts calculating the second step in the same manner, 

k4 = hf(xo + h, yi), 

k5 = hf(xo + 3h, Yi + Ik4), 

k6 = hf(xo + 3h, y, + (k4 + k)). 

Before completing this step, an extra function evaluation is made which allows us 
to estimate the local error accumulated in two steps, 

k, = hf(xo + 2h, yo + 6(-k- 96k + 92k2- 121k:3 + 144k4 + 6k;- 12k6,)), 

r V-(-ko + 4k2 + 17k3 -23k. + 4k6 - k7). 

Now, if r is tolerable, we complete the computation of the second step, 

k8 hf(xo + 2h, Yi - kr, + 2k63), 

Y2 =Y1 + I(k4+ 4k6 + k8), 

and continue as before.- 
If the step size of h is acceptable, a total of 41 function evaluations per step are 

made. If the step is to be rejected, we lose seven function evaluations. In this regard, 
let is note that England's scheme is more flexible than doubling since we can reduce 
h by any suitable factor without penalty. This remark is quite important to the design 
of codes using optimally chosen step sizes. 

Using the same notation as above, our error estimate over x = 0 to x = h is 

(17) e(h) - (k0 U-4k2 - 17k3 + 23k4 - 4k6 + k7), 180 

where we substitute xO = 0, yo 0 in the formulas leading to (16). Note that the 
estimate of the local error incurred in one step is taken to be the average of the esti- 
mated error over two steps, just as in doubling. 

4. Numerical Comparisons. In order not to introduce possible extraneous 
effects from different R-K processes, we have performed all comparisons using the 
R-K process of England's scheme. In point of fact, while one method might perform 
considerably better than another on a chosen equation, all the common fourth-order 
R-K processes perform about the same on the average with perhaps a slight advantage 
given to those with "optimal" parameters. However, it seems more appropriate to 
our aim of comparing estimators to use the same Runge-Kutta method in all cases. 
The results we give are obtained from the error estimates of Eqs. (10), (12), (13) and 
(17). 

Let us comment further about the actual numerical experiments. All computations 
were performed on a CDC 6600 computer using double precision in nearly all cal- 
culations. (A double-precision word constitutes approximately 29 decimal digits.) 
The statistics have been accumulated over a set of 500 problems in which twenty 
terms were carried in the series (1), (2). Final results were actually obtained by averag- 
ing the statistics from five different sets of 100 problems each. Since the approximate 
d(f) values for the different problem sets were in good agreement and all data yielded 
consistent interpretations, we were satisfied that our ensemble formed a large enough 
sample to extract meaningful statistics. 
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We chose {h = 2-; N = 3, 4, ... , 16} for our sequence of h values and accepted 
"convergence" of the d(f) values if for two successive h's they agreed within 2.5 
percent. (To collect additional data we actually forced a minimum of ten such itera- 
tions to take place.) Usually, the convergence criterion was satisfied at this stage, 
though about 10 percent of the problems did not produce "converged" d(f) values. 
A detailed study of these problems indicated that the computations were being 
limited by the precision available so that the results could not be improved by con- 
sidering smaller values of h. These may be described as "easy" problems in the sense 
that one or more of the estimators seemed to produce a d(f) value which was at least 
an order of magnitude less than the corresponding average value obtained. In any 
attempt to compute asymptotic limits of differences, it is implicitly necessary to 
meet the convergence test before all significance is lost in the computer word. The 
long word length we used makes the situation infrequent but to avoid meaningless 
results, it was necessary to reject and replace by other random problems those prob- 
lems for which significant values could not be obtained in this precision. Also, since 
the estimator (12) generally produced values of d(f) which were smaller than the 
others by roughly a factor of ten, we decided to relax the acceptance criterion for it 
to 5 percent. The net effect of this discussion is that about 8 percent of the 500 problem 
ensemble were replaced by other random problems not causing any convergence 
difficulties. Table 1 gives the asymptotic results thus compiled. For easy recognition, 
we refer to estimators (10) as doubling, (12) as C-K#l, (13) as C-K#2, and (17) as 
England. 

TABLE 1. Asymptotic Comparisons 

average Id(I)I maximum Id(f) 

C-K#1 .0024 .016 
England .019 .11 
Doubling .019 .12 
C-K#2 .037 .23 

Thus, asymptotically, the Ceschino-Kuntzmann estimator (12) is the most accurate 
since it obtains the best agreement with the error term of order h6. In nearly all problem 
rejections due to limiting precision this formula was the major cause. That is, one 
could argue that the average given above is somewhat conservative relative to the 
other three estimators. An important conclusion is that asymptotically the doubling 
and England estimators have virtually identical behavior. 

While we recognize that it is difficult to obtain meaningful results about non- 
asymptotic behavior (there is a strong problem dependence here), we feel that the 
following statistics collected do give the reader some feeling as to the performance 
of the various methods in this respect. For each h and each method, we computed 
the relative discrepancies 

(18) R(h) = r(h) - e(h) 
r(h) 
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The averages, taken over the 500 problem ensemble, are given in Table 2. We also 
show the average values of Ir(h)/y(h)j which are the relative sizes of the actual errors 
made in the R-K step. 

TABLE 2. Nonasymptotic Comparisons 

N = -log2h 
3 4 5 6 7 

C-K#l 1.4 24. .11 .16 .01 
England .98 31. .27 1.9 .10 
Doubling .98 29. .26 2.1 .10 
C-K#2 2.2 49. .49 4.5 .20 

8.5 * 10-6 5.6 * 10-7 3.2 * 10-8 1.7 * 10-" 1.1 * 10-10 
average Ir(h)/y(h) I 

For all smaller h's the values of R(h) decrease fairly smoothly with the relative com- 
parisons maintaining essentially the factors shown for N = 7. While the erratic 
behavior of Table 2 is generally to be expected, we attempted to sort out what might 
be the typical situation. In a somewhat ad hoc fashion, we filtered out nine of the 
problems in which R(h) seemed unreasonably large for the corresponding h. These 
might be termed "hard" problems. A detailed examination of these revealed that 
the difficulties were encountered when the true error T(h) changed signs between 
successive h's. It was observed that two factors then created a rather large R(h). 
In some instances, the change in sign was not immediately detected by e(h) and 
usually the value of T(h) was somewhat smaller than the expected local error. Table 
3 gives the same information as Table 2 without the presence of the nine "hard" 
problems. 

TABLE 3. Nonasymptotic Comparisons 

N = -log2h 
3 4 5 6 7 

C-K#I 1.4 .31 .07 .02 .006 
England .96 .40 .20 .09 .045 
Doubling .96 .41 .19 .09 .045 
C-K#2 2.2 .82 .39 .18 .09 

8.5 * 108B 5.6 * 107 3.2* 108 1.7 * 109 1. 1 * 10 10 
average lr(h)/y(h)I 

The smooth trends of this data continue for all smaller h's and again we note that 
there is almost no distinction between doubling and England's estimator. Examination 
of the corresponding Ir/yj values shows that the estimators may be considered 
reliable only when [rl/y is approximately 10' and smaller. One is tempted to ex- 
trapolate the data of Table 3 for larger values of h and, therefore, larger values for 
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Ir/yI. If this is done, the graphs of the data lead one to suspect that the estimating 
procedures of doubling and England's scheme perform considerably better on a 
nonasymptotic basis than do the multistage estimators. Of course, our study does 
not substantiate this, but let us also recall that the estimators (12), (13) effectively 
average the errors committed in three steps compared to averaging the errors over 
two steps as in (10), (17). Thus, it seems plausible that large step sizes with a rapidly 
changing error could conceivably result in less reliable estimates from the multistage 
formulas. 

We also monitored the ratios e(h)/r(h) for distinguishing features of under- and 
over-estimations by the various methods. While these effects did separate the estima- 
tors, the similarities were clearly evident and it was felt that no important pattern 
emerged. Furthermore, we observed roughly symmetrical behavior in each estimator 
with respect to under- and over-estimation by certain predetermined amounts. 

5. Conclusions and Tests of a Production Code. The results of the preced- 
ing section clearly show that the Ceschino-Kuntzmann estimator (12) is the most 
accurate, asymptotically. However, practical considerations appear to us to make 
it somewhat undesirable. The scheme partially destroys the flexibility afforded by 
one-step methods and requires a relatively complicated code. To fully utilize the 
good stability properties of Runge-Kutta schemes, it seems necessary to use "large" 
h, but the nonasymptotic behavior of this method is questionable. Nevertheless, the 
use of (12) in a code being designed should be considered since further study is 
needed. The closely related estimator (11) is not competitive on the grounds of 
accuracy though it is less costly. 

The method of doubling and that of England are entirely comparable. Both 
estimate precisely the same quantity-the error over two steps-and their accuracies 
are essentially identical. England's scheme is substantially cheaper and is more 
flexible for the purposes of step adjustment. The logical structures of the doubling 
estimator and England's are so similar that it is an easy matter to alter a doubling 
code to use the England estimator. We recommend this be done. 

To demonstrate the effect of altering a doubling code to use England's estimator, 
we modified a production code [9] in this way and ran a number of tests. The code to 
be modified uses the classical fourth-order R-K procedure so in fact we tested three 
codes. One was the production code with doubling and the classical choice of param- 
eters. Another used doubling and England's choice of parameters, and the third used 
England's estimator and parameters. We attempted to modify as little code as pos- 
sible when incorporating these changes. Test problems were drawn from a number of 
sources and were augmented with problems for which the two integration processes 
performed quite differently. Runs were made with three kinds of error criterion- 
relative, absolute, and mixed-and requested error tolerances of 10', for k = 
2, 4, 6, 8, 10. In most cases, average and maximum errors were evaluated on ten 
equally spaced points in the interval of integration. 

Full details of the tests and the results are presented in the report [10]. The data 
rather uniformly show that all three codes performed with the same accuracy on the 
average and the England estimator required approximately 18 percent fewer function 
evaluations than the codes using doubling. This verifies experimentally what the 
function counts of Section 3 would lead us to expect. 
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We feel a strong case has been made for altering a doubling code to use England's 
estimator. While it appears that going to a Ceschino-Kuntzmann estimator might 
lead to still more efficient codes, we do not know of any numerical evidence to sub- 
stantiate this. We have not yet sought to make a comparison of this kind. 
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